Multivariate Analysis of *in vivo* PET data using Partial Least Squares

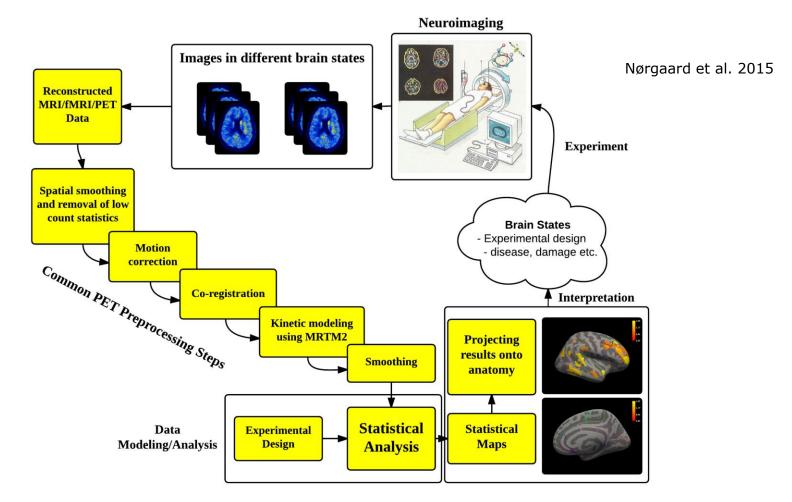
Martin Nørgaard

Neurobiology Research Unit

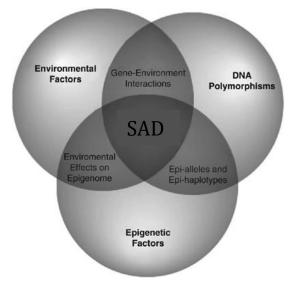
Copenhagen University Hospital, Rigshospitalet

5-HTT Brain Network Response to Seasonal Affective Disorder in Females with the Short 5-HTTLPR Genotype: A Partial Least Squares Approach

Martin Nørgaard


Neurobiology Research Unit

Copenhagen University Hospital, Rigshospitalet


Neuroimaging Workflow

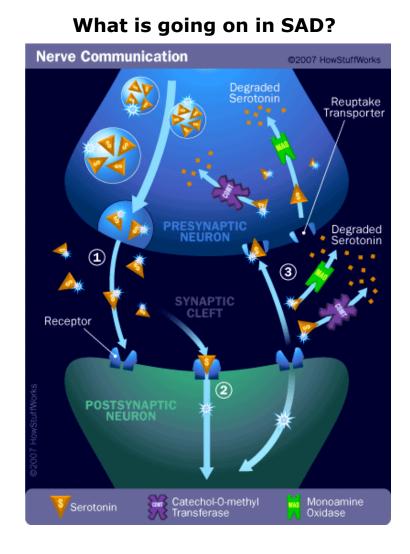
[Tabachnick and Fidell, 2001] – "Do not expect garbage in, roses out"

- Characterized by season triggered depression and encompasses feelings of hopelessness and blameworthiness, loss of energy, impaired concentration and hypersomnia.
- Is estimated to affect 5% of the Northern inhabitants (mostly due to long and dark winters).
- Seasonal Affective Disorder is, in part, hypothesized to be triggered by a seasonal dysregulation of the serotonin transporter, the mechanism in which serotonin is taken up by the presynaptic neuron and recycled.

Previous studies investigating the serotonin transporter in SAD

- Neumeister et al., 2000 (n=12) Ψ ٠
- Buchert et al., 2006 (*n* = 29) ↑ ٠
- Koskela et al., 2008 (n = 24) -٠
- Praschak-Rieder et al., 2008 (n = 88) ٠ ♠
- Kalbitzer et al., 2010 (*n* = 57) **↑** ٠
- Murthy et al., 2010 (n = 63) -٠
- Matheson et al., 2015 (n = 40) -٠
- Mc Mahon et al., 2016 (n = 40) ↓↑ ٠
- Tyrer et al., 2016 (n = 40) **↓**↑ •

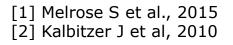
Nerve Communication ©2007 HowStuffWorks Degraded Reuptake Transporter Degraded (3) SYNAPTIC CLEFT Receptor 2 POSTSYNAPTIC Catechol-O-methyl Monoamine Transferase Oxidase

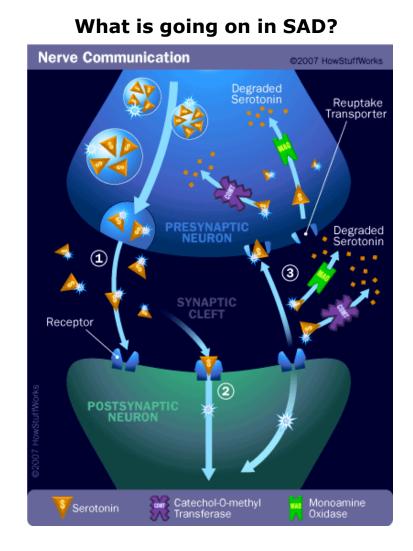

What is going on in SAD?

Previous studies investigating the serotonin transporter in SAD

- Neumeister et al., 2000 (*n*=12) ↓
- Buchert et al., 2006 (n = 29) ↑
- Koskela et al., 2008 (n = 24) -
- Praschak-Rieder et al., 2008 (n = 88)
- Kalbitzer et al., 2010 (n = 57) ↑
- Murthy et al., 2010 (n = 63) -
- Matheson et al., 2015 (n = 40) -
- Mc Mahon et al., 2016 (n = 40) ↓↑
- Tyrer et al., 2016 (n = 40) ↓↑

So why do we want to investigate females with the short 5-HTTLPR variant?




Previous studies investigating the serotonin transporter in SAD

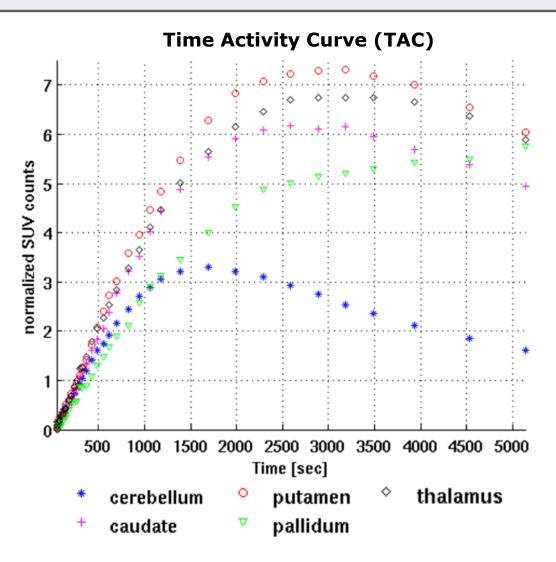
- Neumeister et al., 2000 (n=12) ↓
- Buchert et al., 2006 (n = 29) ↑
- Koskela et al., 2008 (n = 24) -
- Praschak-Rieder et al., 2008 (n = 88)
- Kalbitzer et al., 2010 (n = 57) ↑
- Murthy et al., 2010 (n = 63) -
- Matheson et al., 2015 (n = 40) -
- Mc Mahon et al., 2016 (n = 40) ↓↑
- Tyrer et al., 2016 (n = 40) ↓↑

So why do we want to investigate females with the short 5-HTTLPR variant?

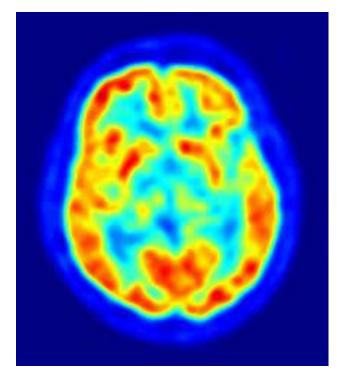
- 1. Females have a 4-fold increase in developing SAD compared to men [1]
- 2. S'-carriers of the 5-HTTLPR genotype are thought to be more susceptible to developing depression [2].

Martin Nørgaard

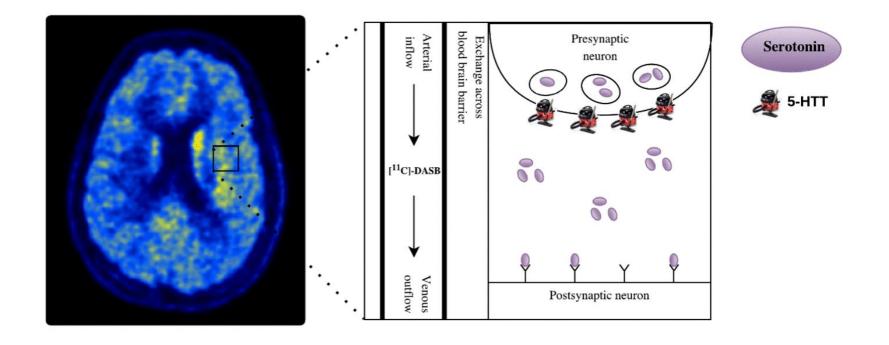
NRU, Copenhagen University Hospital, Rigshospitalet

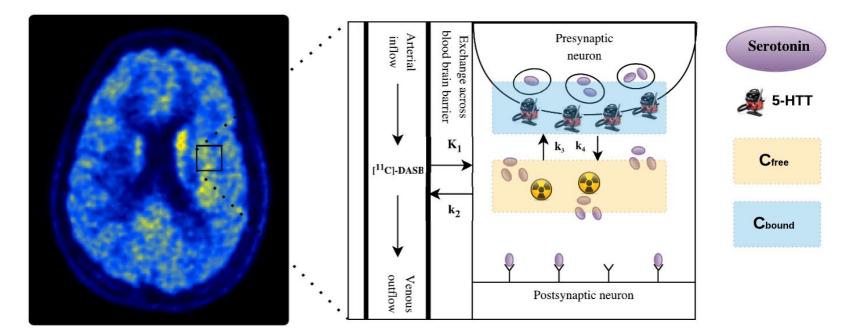


12	6	
23.6±3.16	23.74±2.36	0.925
22.79±2.26	20.87±1.74	0.088
5.08/5.25	6/23.33	0.64/0.0001
3/3.38	4.83/6.16	0.083/0.013
81.83/81.58	84.33/86.16	0.86/0.595
4.33±2.15	14.5±2.07	< 0.0001
1009/438	1043/475	0.045/0.02
	23.6±3.16 22.79±2.26 5.08/5.25 3/3.38 81.83/81.58 4.33±2.15	23.6±3.1623.74±2.3622.79±2.2620.87±1.745.08/5.256/23.333/3.384.83/6.1681.83/81.5884.33/86.164.33±2.1514.5±2.07

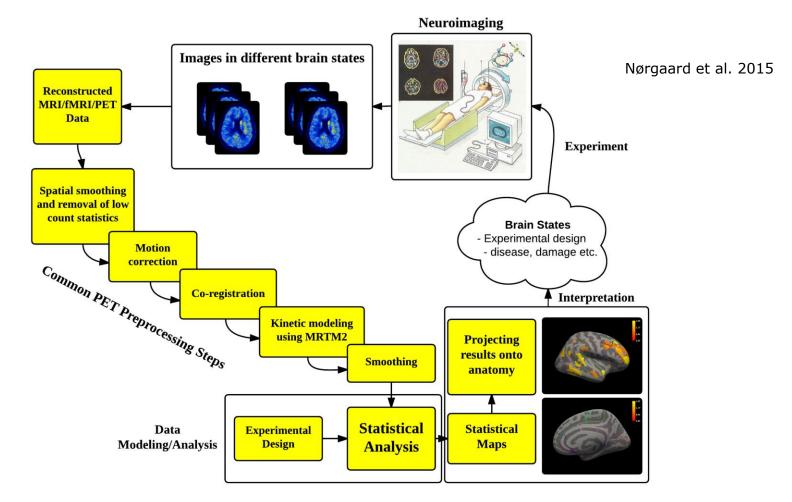

Table I: Demographic information. * One resilient female was omitted because in an initial analysis, this person's neuroticism-score exceeded 3 S.D.'s from the mean (neuroticism-score = 139).

Positron Emission Tomography (PET)


[¹¹C]-DASB uptake in the brain



Kinetic Modeling in [¹¹C]-DASB for generating parametric images of serotonin transporter binding


Kinetic Modeling in [¹¹C]-DASB for generating parametric images of serotonin transporter binding

(1)
$$\frac{dC_{free}(t)}{dt} = K_1 C_p(t) - (k_2 + k_3) C_{free}(t) + k_4 C_{bound}(t)$$

(2)
$$\frac{dC_{Bound}(t)}{dt} = k_3 C_{free}(t) - k_4 C_{bound}(t)$$

(3)
$$BP_{ND} = \frac{k_3}{k_4}$$

Neuroimaging Workflow

[Tabachnick and Fidell, 2001] – "Do not expect garbage in, roses out"

Partial Least Squares (PLS) methods for neuroimaging: A tutorial and review

Anjali Krishnan^a, Lynne J. Williams^b, Anthony Randal McIntosh^{c,d,*}, Hervé Abdi^{a,*}

NeuroImage 56 (2011) 455-475

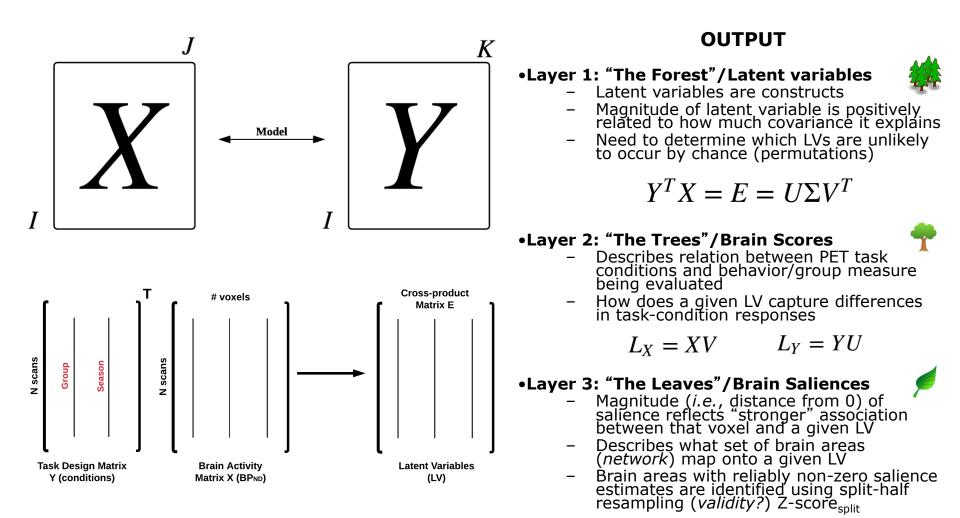
Spatial Pattern Analysis of Functional Brain Images Using Partial Least Squares

A. R. McIntosh,* F. L. Bookstein,† J. V. Haxby,‡ and C. L. Grady*·§ Neuroimage 3, 143–157 (1996)

Partial least squares analysis of neuroimaging data: applications and advances

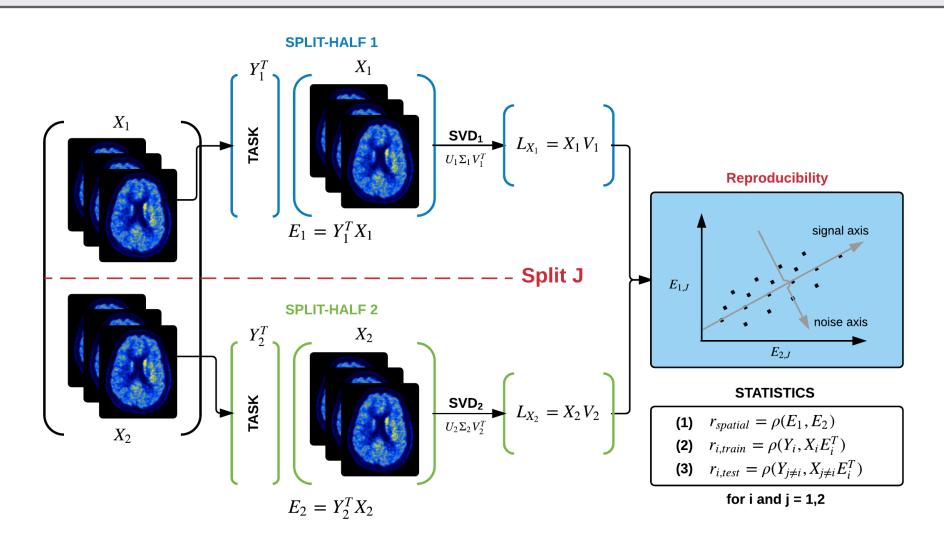
Anthony Randal McIntosh^{a,*} and Nancy J. Lobaugh^b

NeuroImage 23 (2004) S250-S263



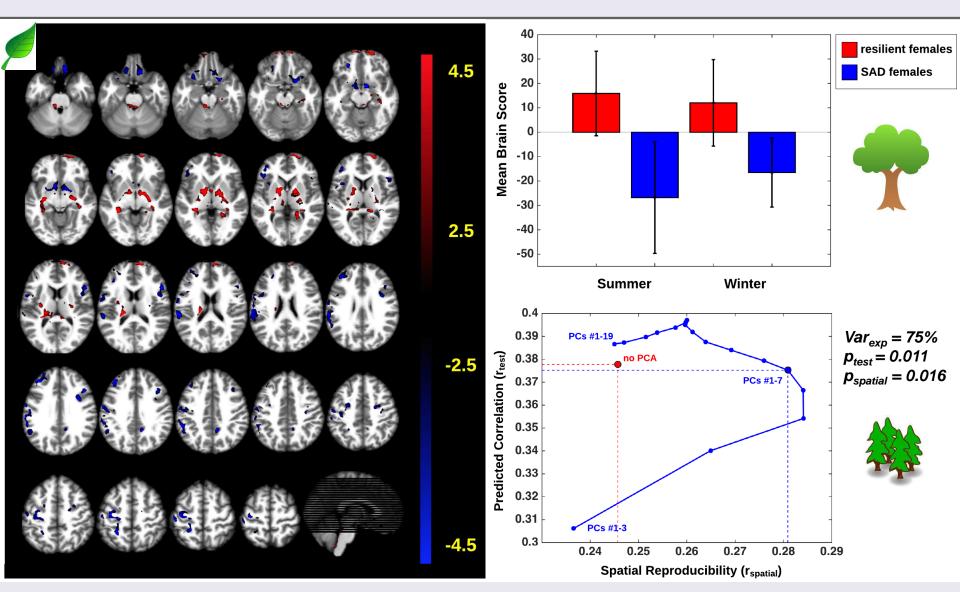
Partial Least Squares (PLS)

- An acronym: **P**artial **L**east **S**quares
- Correlational technique that analyzes associations between two sets of data
 - For example: behavior & brain activity
- "A multivariate approach that robustly identifies spatiotemporal patterns that covary with tasks or experimental conditions"
 - Grady et al., ENPP (2013)
- Similar to a PCA in maximizing covariance explained but with respect to additional "condition" information
 - Behavioral measure(s)
 - Group status
- PLS evaluates data from all voxels, all time points and all people simultaneously
 - Brain function is a "network" of areas not individual regions
 - No need to correct for multiple comparisons



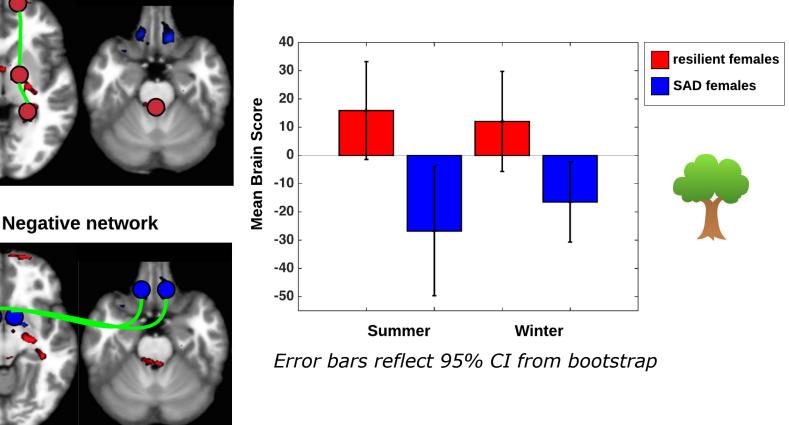
Partial Least Squares (PLS)

Partial Least Squares (PLS) – stabilizing the results using split-half resampling



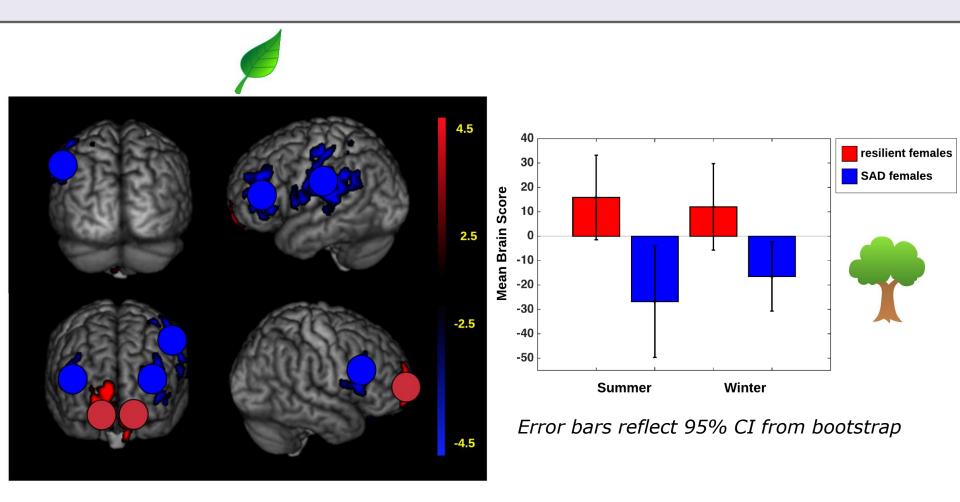
Partial Least Squares (PLS) – stabilizing the results using split-half resampling

5-HTT Brain network of LV1-associated brain regions



The Leaves: Network of LV1-associated brain regions

Positive network


Threshold: brain regions with Z-score_{split} > \pm 2.6 and volume > 640 mm³

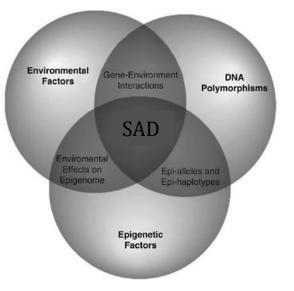
Martin Nørgaard

NRU, Copenhagen University Hospital, Rigshospitalet

The Leaves: Network of LV1-associated brain regions

Threshold: brain regions with Z-score_{split} > \pm 2.6 and volume > 640 mm³

- Evidence for a latent variable that significantly distinguished condition responses across groups
 - LV "positive" network: hippocampus, thalamus, pallidum, mPFC, and median raphe.
 - LV "negative" network: ventral striatum (nucleus accumbens), omPFC, dIPFC, supramarginal gyrus.
- Adaptation of a 5-HTT network to the environmental stressor of winter
 - resilient: higher 5-HTT in a subcortical network in the summer compared to females with SAD.
 - SAD: higher 5-HTT in parts of a cortical network and ventral striatum.
 - PLS analysis suggests a network of brain areas that respond to the environmental stressor of winter in a serotonindependent fashion. But we only observe a significant difference in the network between groups in the summertime?



Future perspectives

- 1. Optimizing the preprocessing pipeline to lower variability within subject and between subjects.
 - 2. Investigate functional connectivity using fMRI within the identified network and using the same cohort.
 - 3. Individual evaluation of brain response -> a biomarker for personalized treatment in SAD?

Questions still to be answered:

- 1. Different networks/mechanisms for males vs. females in SAD?
- 2. More data? Split-half resampling represents a powerful procedure for providing unbiased measures of brain behavior and spatial reproducibility. Therefore current results can be "trusted"!
 - 3. Neurobiological interpretation?

Thank you for your attention!

- Collaborators
 - Melanie Ganz
 - Nathan Churchill
 - Brenda Mc Mahon
 - Patrick Fisher
 - Vincent Beliveau
 - Peter S. Jensen
 - Claus Svarer
 - Gitte Moos Knudsen
 - Stephen C. Strother

Questions?

