MGH/HST Athinoula A. Martinos Center for Biomedical Imaging

Harvard-MIT Health Sciences & Technology

Surface-based Group Analysis in FreeSurfer

Outline

- Objectives & Example
- GLM Theory & Linear Algebra Review
- Command-line Stream
 - Assemble Data
 - Design/Contrast
 - Analyze
 - Visualize

Group Analysis Objective

- To create a model that can describe patterns of interactions and associations
- The parameters of the model provide measures of the strength of associations
- A General Linear Model (GLM) focuses on estimating the parameters of the model such that they can be applied to new data sets to create reasonable inferences.

Types of Questions

- Does a specific variable have a significant association with an outcome?
- If we control for the effects of a second variable, is the association still significant?
- Is there a group difference in outcome?
- Does a specific variable affect individual outcome differently between groups of individuals?

Aging Exploratory Analysis

In which areas does thickness Change with age?

> Cortical Thickness vs Aging Salat et al, 2004, Cerebral Cortex

Aging Thickness Study

N=40 (all in fsaverage space)

Age (years)

p<.01

Positive Age Correlation

Surface-based Measures

- Morphometric (e.g., thickness)
- Functional
- PET
- MEG/EEG

Diffusion (?) sampled just under the surface

The General Linear Model (GLM)

GLM Theory Is Thickness correlated with Age?

Independent Variable

Linear Algebra Review (stay calm...)

Linear Algebra Review (stay calm...)

We can put this in matrix format:

$$y = mx + b$$

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} 1 & x1 \\ 1 & x2 \\ 1 & x3 \\ 1 & x4 \end{pmatrix},$$

Design Matrix Regression Coefficients (parameters)

b

-One row per data point -Add column of 1's for the offset term (*b*) -One set of parameters

Matrix Multiplication

System of —Linear Equations

Linear Model

- **X** = Design Matrix
- **b** = Regression Coefficients
 - = Parameter estimates
 - = "betas"
 - = beta.mgh (mri_glmfit output)

System of Linear Equations $y1 = 1^{*}b + x1^{*}m$ $y2 = 1^{*}b + x2^{*}m$

-One row per subject
-x values are independent variable (age)
-Column of 1's is the 'offset' term (to multiply by *b*)

 $\mathbf{Y} = \mathbf{X}^* \mathbf{b}$

 $\mathbf{b} = \begin{bmatrix} b \\ c \end{bmatrix}$

Error

BUT... if we have the same *m* and *b* for all data points, we will have errors:

GOAL: minimize the sum of the square of error terms when estimating our *m* and *b* terms There are lots of ways to do this! (Beyond the scope of this talk, but FreeSurfer does it for you!)

More than Two Data Points

y1 = 1*b + x1*m + n1 y2 = 1*b + x2*m + n2 y3 = 1*b + x3*m + n3y4 = 1*b + x4*m + n4

$$\begin{bmatrix} y1\\y2\\y3\\y4 \end{bmatrix} = \begin{bmatrix} 1 & x1\\1 & x2\\1 & x3\\1 & x4 \end{bmatrix} * \begin{bmatrix} b\\m \end{bmatrix} + \begin{bmatrix} n1\\n2\\n3\\n4 \end{bmatrix}$$

$$Y = X*b+n$$

- Model Error
- Noise
- Residuals
- eres.mgh

Forming a Hypothesis

- •Now, we can fit our parameters, but we need a hypothesis
- •Our example: Is there a significant association between age and thickness?
- Formal Hypothesis: The slope of age v. thickness (*m*) is significantly different from zero

Testing Our Hypothesis

- Once we fit our model for the optimal regression coefficients (m and b), we need to test them for significance as well as test the direction of the effect
- We do this by forming something called a <u>contrast matrix</u> that isolates our parameter of interest
- We can multiply our contrast matrix by our regression coefficient matrix to compute a variable **g**, which tells us the *direction of our effect*
- In this example, since our hypothesis is about the slope *m* we will design our contrast matrix to be [0 1]

If g is negative, then the direction of our effect (slope) is also negative

Testing our Hypothesis

- We still need to test for *significance*
- We'll use our **contrast matrix** [0 1] again here in a *t-test:*

p-values

p-value/significance

- value between 0 and 1
- depends on your sample size
- closer to 0 means more significant

FreeSurfer stores p-values as -log10(p):

- $0.1=10^{-1} \rightarrow sig=1, 0.01=10^{-2} \rightarrow sig=2$
- sig.mgh files
- Signed by sign of g
- p-value is for an unsigned test

Putting it all together

1. We used our empirical data to form a design matrix: X

2. We fit regression coefficients (b and m) to our x,y data

- 3. We created a **contrast matrix: C** to test our hypothesis for:
 - 1. Direction of effect: $g = C^*\beta$
 - 2. Significance of effect: t-test

Two Groups

- Do groups differ in Intercept?
- Do groups differ in Slope?
 - Is average slope different from 0?

Two Groups

y11 = 1*b1 + 0*b2 + x11*m1 + 0*m2 + n11 y12 = 1*b1 + 0*b2 + x12*m1 + 0*m2 + n12 y21 = 0*b1 + 1*b2 + 0*m1 + x21*m2 + n21y22 = 0*b1 + 1*b2 + 0*m1 + x22*m2 + n22

Two Groups

Surface-based Group Analysis in FreeSurfer

- Create your own design and contrast matrices
- Create an FSGD File
 - FreeSurfer creates design matrix
 - You still have to specify contrasts
- QDEC
 - Limited to 2 discrete variables, 2 levels max
 - Limited to 2 continuous variables

Processing Stages

- Specify Subjects and Surface measures
- Assemble Data:
 - Resample into Common Space
 - Smooth
 - Concatenate into one file
- Model and Contrasts (GLM)
- Fit Model (Estimate)
- Correct for multiple comparisons
- Visualize

Command-line Processing Stages

- Assemble Data (*mris_preproc*)
 - Resample into Common Space
 - Smooth
 - Concatenate into one file
- Model and Contrasts (GLM) (FSGD)
- Fit Model (Estimate) (*mri_glmfit*)
- Correct for multiple comparisons
- Visualize (*tksurfer*)

recon-all -qcache

Run after all editing is done.

FreeSurfer Directory Tree

Example: Thickness Study

- 1. \$SUBJECTS_DIR/bert/surf/lh.thickness
- 2. \$SUBJECTS_DIR/fred/surf/lh.thickness
- 3. \$SUBJECTS_DIR/jenny/surf/lh.thickness
- 4. \$SUBJECTS_DIR/margaret/surf/lh.thickness

5. ...

FreeSurfer Group Descriptor (FSGD) File

- Simple text file
- List of all subjects in the study
- Accompanying demographics
- Automatic design matrix creation
- You must still specify the contrast matrices

Note: Can specify design matrix explicitly with --design

FSGD Format

GroupDescripto Class Male Class Female	rFile 1			
Variables Input bert Input fred Input jenny Input margaret	Male Male Female Female	Age 10 15 20 25	Weight 100 150 200 250	IQ 1000 1500 2000 2500

- One Discrete Factor (Gender) with Two Levels (M&F)
- Three Continuous Variables: Age, Weight, IQ

Class = Group

Note: Can specify design matrix explicitly with --design

FSGDF \rightarrow X (Automatic)

DODS – Different Offset, Different Slope

Another FSGD Example

- Two Discrete Factors
 - Gender: Two Levels (M&F)
 - Handedness: Two Levels (L&R)
- One Continuous Variable: Age

GroupDescriptorFile 1 Class MaleRight Class MaleLeft Class FemaleRight Class FemaleLeft Variables Input bert MaleLeft Input fred MaleRight Input jenny FemaleRight Input margaret FemaleLeft

Class = Group

Interaction Contrast

- Two Discrete Factors (no continuous, for now)
 - Gender: Two Levels (M&F)
 - Handedness: Two Levels (L&R)
- Four Regressors (Offsets)
 - MR (b₁), ML (b₂), FR (b₃), FL (b₄)

GroupDescriptorFile 1 Class MaleRight Class MaleLeft Class FemaleRight Class FemaleLeft Input bert MaleLeft Input fred MaleRight Input jenny FemaleLeft Input margaret FemaleRight

Factors, Levels, Groups

Usually each Group/Class:

- Has its own Intercept
- Has its own Slope (for each continuous variable)
- NRegressors = NClasses * (NVariables+1) DODS
- Nregressors = NClasses + Nvariables
 DOSS

Why is this important? Because you will need to create contrast matrices, and the contrast matrix must have Nregressor elements.

Factors, Levels, Groups, Classes

Continuous Variables/Factors: Age, IQ, Volume, etc.

Discrete Variables/Factors:

Gender, Handedness, Diagnosis

Levels of Discrete Variables:

- Handedness: Left and Right
- Gender: Male and Female
- Diagnosis: Normal, MCI, AD

Group or Class: Specification of All Discrete Factors

- Left-handed Male MCI
- Right-handed Female Normal

Assemble Data: mris_preproc

mris_preproc --help

--fsgd FSGDFile --hemi lh

--meas thickness --target fsaverage

--o lh.thickness.mgh

: Specify subjects thru FSGD File

- : Process left hemisphere
- : subjectid/surf/hemi.thickness
- : common space is subject fsaverage
- : output "volume-encoded surface file"

Lots of other options!

 → Output: Ih.thickness.mgh – file with stacked thickness maps for all subjects
 → Input to Smoother or GLM

Surface Smoothing

- mri_surf2surf --help
- Loads stacked lh.thickness.mgh
- 2D surface-based smoothing
- Specify FWHM (eg, fwhm = 10 mm)
- Saves stacked lh.thickness.sm10.mgh
- Can be slow (~10-60min)
- recon-all –qcache (computes for each subject, run after you are finished editing subject)

- Reads in FSGD File and constructs X
- Reads in your contrasts (C1, C2, etc.)
- Loads data (lh.thickness.sm10.mgh)
- Fits GLM (ie, computes b)
- Computes contrasts (g=C*b)
- t or F ratios, significances
- Significance -log10(p) $(.01 \rightarrow 2, .001 \rightarrow 3)$

mri_glmfit

- --y lh.thickness.sm10.mgh
- --fsgd gender_age.txt
- --C age.mtx –C gender.mtx
- --surf fsaverage lh
- --cortex
- --glmdir lh.gender_age.glmdir

mri_glmfit --help

mri_glmfit

--y lh.thickness.sm10.mgh

- --fsgd gender_age.txt
- --C age.mtx –C gender.mtx
- --surf fsaverage lh
- --cortex
- --glmdir lh.gender_age.glmdir

- Input file (output from smoothing).
- Stack of subjects, one frame per subject.

mri_glmfit

--y lh.thickness.sm10.mgh

- --fsgd gender_age.txt
- --C age.mtx –C gender.mtx
- --surf fsaverage lh
- --cortex

--glmdir lh.gender_age.glmdir

- FreeSurfer Group Descriptor File (FSGD)
- Group membership
- Covariates

mri_glmfit

- --y lh.thickness.sm10.mgh
- --fsgd gender_age.txt

--C age.mtx –C gender.mtx

--surf fsaverage lh

--cortex

--glmdir lh.gender_age.glmdir

- Contrast Matrices
- Simple text/ASCII files
- Test hypotheses

mri_glmfit

- --y lh.thickness.sm10.mgh
- --fsgd gender_age.txt

--C age.mtx –C gender.mtx

--surf fsaverage lh

--cortex

--glmdir lh.gender_age.glmdir

- Perform analysis on left hemisphere of fsaverage subject
- Masks by fsaverage cortex.label
- Computes FWHM in 2D

mri_glmfit

- --y lh.thickness.sm10.mgh
- --fsgd gender_age.txt
- --C age.mtx –C gender.mtx
- --surf fsaverage lh

--cortex

--glmdir lh.gender_age.glmdir

Output directory: lh.gender_age.glmdir/ beta.mgh – parameter estimates rvar.mgh – residual error variance etc ...

age/ sig.mgh – -log10(p), uncorrected gamma.mgh, F.mgh gender/ sig.mgh – -log10(p), uncorrected gamma.mgh, F.mgh

Visualization with freeview

freeview --f \$FREESURFER_HOME/subjects/fsaverage/surf/lh.pial:overlay=sig.mgh

change

thresholds for

visualization

(recall: lower

regions where

p<0.05)

GLM Analysis Using Aseg/Aparc Stats Files

mri_glmfit
--table aparc_lh_vol_stats.txt
--fsgd gender_age.txt
--C age.mtx --C gender.mtx
--glmdir roi.gender_age.glmdir

- Use "--table table.txt" instead of "--y" to specify input
- The rest of the command-line is the same as you would use for a group study (eg, FSGD file and contrasts).
- Output is text file sig.table.dat that lists the significances (log10(p)) for each ROI and contrast.

Tutorial

Command-line Stream

- Create an FSGD File for a thickness study
- Age and Gender
- Run
 - mris_preproc
 - mri_surf2surf
 - mri_glmfit